Search results
Results from the WOW.Com Content Network
4 Vapor pressure of liquid. ... This page provides supplementary chemical data on ethylene glycol. ... Table data obtained from CRC Handbook of Chemistry and Physics ...
Toggle the table of contents. List of boiling and freezing information of solvents. ... Ethylene glycol: 1.11 197.3 2.26 −12.9 –3.11
Ethylene oxide reacts with water to produce ethylene glycol according to the chemical equation. C 2 H 4 O + H 2 O → HO−CH 2 CH 2 −OH. This reaction can be catalyzed by either acids or bases, or can occur at neutral pH under elevated temperatures. The highest yields of ethylene glycol occur at acidic or neutral pH with a large excess of water.
Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids. [7] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [ 1 ] 760 Torr, 101.325 kPa, or 14.69595 psi.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
In a similar manner, the chemical potential of the vapor above the solution is lower than that above a pure solvent, which results in boiling-point elevation. Freezing-point depression is what causes sea water (a mixture of salt and other compounds in water) to remain liquid at temperatures below 0 °C (32 °F), the freezing point of pure water.