Search results
Results from the WOW.Com Content Network
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
Irrespective of the problem category, the process of solving a problem can be divided into two broad steps: constructing an efficient algorithm, and implementing the algorithm in a suitable programming language (the set of programming languages allowed varies from contest to contest). These are the two most commonly tested skills in programming ...
Even though the total number of sub-problems is actually small (only 43 of them), we end up solving the same problems over and over if we adopt a naive recursive solution such as this. Dynamic programming takes account of this fact and solves each sub-problem only once. Figure 2. The subproblem graph for the Fibonacci sequence.
In computer science and mathematics, the Josephus problem (or Josephus permutation) is a theoretical problem related to a certain counting-out game. Such games are used to pick out a person from a group, e.g. eeny, meeny, miny, moe. A drawing for the Josephus problem sequence for 500 people and skipping value of 6.
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
Problem 2. Find the path of minimum total length between two given nodes P {\displaystyle P} and Q {\displaystyle Q} . We use the fact that, if R {\displaystyle R} is a node on the minimal path from P {\displaystyle P} to Q {\displaystyle Q} , knowledge of the latter implies the knowledge of the minimal path from P {\displaystyle P} to R ...
The picture shows two strings where the problem has multiple solutions. Although the substring occurrences always overlap, it is impossible to obtain a longer common substring by "uniting" them. The strings "ABABC", "BABCA" and "ABCBA" have only one longest common substring, viz. "ABC" of length 3.
The divide-and-conquer paradigm is often used to find an optimal solution of a problem. Its basic idea is to decompose a given problem into two or more similar, but simpler, subproblems, to solve them in turn, and to compose their solutions to solve the given problem. Problems of sufficient simplicity are solved directly.