Search results
Results from the WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
In statistics, the assumed mean is a method for calculating the arithmetic mean and standard deviation of a data set. It simplifies calculating accurate values by hand. Its interest today is chiefly historical but it can be used to quickly estimate these statistics.
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
The second standard deviation from the mean in a normal distribution encompasses a larger portion of the data, covering approximately 95% of the observations. Standard deviation is a widely used measure of the spread or dispersion of a dataset. It quantifies the average amount of variation or deviation of individual data points from the mean of ...
The standard deviation is more amenable to algebraic manipulation than the expected absolute deviation, and, together with variance and its generalization covariance, is used frequently in theoretical statistics; however the expected absolute deviation tends to be more robust as it is less sensitive to outliers arising from measurement ...
If is a standard normal deviate, then = + will have a normal distribution with expected value and standard deviation . This is equivalent to saying that the standard normal distribution Z {\textstyle Z} can be scaled/stretched by a factor of σ {\textstyle \sigma } and shifted by μ {\textstyle \mu } to yield a different normal distribution ...
Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be
Toggle the table of contents. ... often represent one standard deviation of uncertainty, one standard error, ... also suggest goodness of fit of a given function, ...