Search results
Results from the WOW.Com Content Network
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...
The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic functions and Lévy's continuity theorem. Another important application is to the theory of the decomposability of random variables.
Galton box A Galton box demonstrated. The Galton board, also known as the Galton box or quincunx or bean machine (or incorrectly Dalton board), is a device invented by Francis Galton [1] to demonstrate the central limit theorem, in particular that with sufficient sample size the binomial distribution approximates a normal distribution.
This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3
Berry–Esséen theorem; De Moivre–Laplace theorem; Lyapunov's central limit theorem; Misconceptions about the normal distribution; Martingale central limit theorem; Infinite divisibility (probability) Method of moments (probability theory) Stability (probability) Stein's lemma; Characteristic function (probability theory) Lévy continuity ...
For example, the distributions with finite first, second, and third moment from the exponential family; on the other hand, for some random variables of the heavy tail and fat tail variety, it works very slowly or may not work at all: in such cases one may use the Generalized Central Limit Theorem (GCLT).
This theorem can be used to disprove the central limit theorem holds for by using proof by contradiction. This procedure involves proving that Lindeberg's condition fails for X k {\displaystyle X_{k}} .
The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large number of observations to stretch into the tails.