enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  3. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, c , would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on ...

  4. List of light sources - Wikipedia

    en.wikipedia.org/wiki/List_of_light_sources

    This is a list of sources of light, the visible part of the electromagnetic spectrum.Light sources produce photons from another energy source, such as heat, chemical reactions, or conversion of mass or a different frequency of electromagnetic energy, and include light bulbs and stars like the Sun. Reflectors (such as the moon, cat's eyes, and mirrors) do not actually produce the light that ...

  5. Light-emitting diode physics - Wikipedia

    en.wikipedia.org/wiki/Light-emitting_diode_physics

    The light is emitted equally in all directions from the point-source, but can only escape the semiconductor's surface within a few degrees of perpendicular, illustrated by the cone shapes. When the critical angle is exceeded, photons are reflected internally. The areas between the cones represent the trapped light energy wasted as heat. [1]

  6. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    Each particle carries one quantum of energy, equal to hf, where h is the Planck constant and f is the frequency of the light. That energy possessed by a single photon corresponds exactly to the transition between discrete energy levels in an atom (or other system) that emitted the photon; material absorption of a photon is the reverse process.

  7. Photoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Photoelectric_effect

    The photons of a light beam have a characteristic energy, called photon energy, which is proportional to the frequency of the light.In the photoemission process, when an electron within some material absorbs the energy of a photon and acquires more energy than its binding energy, it is likely to be ejected.

  8. Spontaneous emission - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_emission

    Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light ...

  9. Light-emitting diode - Wikipedia

    en.wikipedia.org/wiki/Light-emitting_diode

    The color of the light (corresponding to the energy of the photons) is determined by the energy required for electrons to cross the band gap of the semiconductor. [5] White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.

  1. Related searches frequency and energy of photons in light bulbs is best known as direct source

    all sources of lightlight emitting diodes physics
    types of light sources