Search results
Results from the WOW.Com Content Network
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
The silent witness rule is the use of "substitutions" when referring to sensitive information in the United States open courtroom jury trial system. An example of a substitution method is the use of code-words on a "key card", to which witnesses and the jury would refer during the trial, but which the public would not have access to.
Euler substitution is a method for evaluating integrals of the form (, + +), where is a rational function of and + +. In such cases, the integrand can be changed to a rational function by using the substitutions of Euler.
Often, theory can establish the existence of a change of variables, although the formula itself cannot be explicitly stated. For an integrable Hamiltonian system of dimension , with ˙ = / and ˙ = /, there exist integrals .
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
In optical fiber technology, the substitution method is a method of measuring the transmission loss of a fiber. It consists of: using a stable optical source, at the wavelength of interest, to drive a mode scrambler, the output of which overfills (drives) a 1 to 2 meter long reference fiber having physical and optical characteristics matching those of the fiber under test,
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .
The method of separation of variables is also used to solve a wide range of linear partial differential equations with boundary and initial conditions, such as the heat equation, wave equation, Laplace equation, Helmholtz equation and biharmonic equation.