enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit).

  3. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    Maneuvering into a large circular orbit, e.g. a geostationary orbit, requires a larger delta-v than an escape orbit, although the latter implies getting arbitrarily far away and having more energy than needed for the orbital speed of the circular orbit. It is also a matter of maneuvering into the orbit.

  4. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    There are two types of orbits: closed (periodic) orbits, and open (escape) orbits. Circular and elliptical orbits are closed. Parabolic and hyperbolic orbits are open. Radial orbits can be either open or closed. Circular orbit: An orbit that has an eccentricity of 0 and whose path traces a circle.

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    All bounded orbits where the gravity of a central body dominates are elliptical in nature. A special case of this is the circular orbit, which is an ellipse of zero eccentricity. The formula for the velocity of a body in a circular orbit at distance r from the center of gravity of mass M can be derived as follows:

  6. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For elliptical orbits, a simple proof shows that ⁡ yields the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury (e = 0.2056), one must simply calculate the inverse sine to find the projection angle of 11.86 degrees. Then, tilting any circular object by that angle ...

  7. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary velocities vary. The three laws state that: [1] [2] The orbit of a planet is an ellipse with the Sun at one of the two foci.

  8. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  9. Deferent and epicycle - Wikipedia

    en.wikipedia.org/wiki/Deferent_and_epicycle

    Johannes Kepler formulated his three laws of planetary motion, which describe the orbits of the planets in the Solar System to a remarkable degree of accuracy utilizing a system that employs elliptical rather than circular orbits. Kepler's three laws are still taught today in university physics and astronomy classes, and the wording of these ...