Search results
Results from the WOW.Com Content Network
Copper loss is the term often given to heat produced by electrical currents in the conductors of transformer windings, or other electrical devices. Copper losses are an undesirable transfer of energy, as are core losses, which result from induced currents in adjacent components.
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the ...
Joule heating (also known as resistive, resistance, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.. Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an electrical conductor equals the product of its resistance and the ...
This equation uses the overall heat transfer coefficient of an unfouled heat exchanger and the fouling resistance to calculate the overall heat transfer coefficient of a fouled heat exchanger. The equation takes into account that the perimeter of the heat exchanger is different on the hot and cold sides.
The standard method can be used for analyzing radial systems under steady state conditions, starting with the appropriate form of the heat equation, or the alternative method, starting with the appropriate form of Fourier's law. For a hollow cylinder in steady state conditions with no heat generation, the appropriate form of heat equation is [9]
For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations: = = + where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by: = (+) + The energy of a unit volume of the fluid is the sum of the kinetic energy / and the internal energy ...
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
The heat equation is an important partial differential equation that describes the distribution of heat (or temperature variation) in a given region over time. In some cases, exact solutions of the equation are available; [ 26 ] in other cases the equation must be solved numerically using computational methods such as DEM-based models for ...