Search results
Results from the WOW.Com Content Network
The theorem appears first in the 1891 article "Die Theorie der regulären graphs". [1] By today's standards Petersen's proof of the theorem is complicated. A series of simplifications of the proof culminated in the proofs by Frink (1926) and König (1936). In modern textbooks Petersen's theorem is covered as an application of Tutte's theorem.
A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.
Petersen graph as Kneser graph ,. The Petersen graph is the complement of the line graph of .It is also the Kneser graph,; this means that it has one vertex for each 2-element subset of a 5-element set, and two vertices are connected by an edge if and only if the corresponding 2-element subsets are disjoint from each other.
In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows: [ 1 ] Let G {\displaystyle G} be a regular graph whose degree is an even number, 2 k {\displaystyle 2k} .
Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Perfect graph theorem; Petersen's theorem;
The Petersen family. K 6 is at the top of the illustration, K 3,3,1 is in the upper right, and the Petersen graph is at the bottom. The blue links indicate ΔY- or YΔ-transforms between graphs in the family. In graph theory, the Petersen family is a set of seven undirected graphs that includes the Petersen graph and the complete graph K 6.
A cubic graph (all vertices have degree three) of girth g that is as small as possible is known as a g-cage (or as a (3,g)-cage).The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. [3]
The Petersen graph, being a snark, has a chromatic index of 4: its edges require four colors. All other generalized Petersen graphs have chromatic index 3. These are the only possibilities, by Vizing's theorem. [12] The generalized Petersen graph G(9, 2) is one of the few graphs known to have only one 3-edge-coloring. [13]