enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Petersen's theorem - Wikipedia

    en.wikipedia.org/wiki/Petersen's_theorem

    The theorem appears first in the 1891 article "Die Theorie der regulären graphs". [1] By today's standards Petersen's proof of the theorem is complicated. A series of simplifications of the proof culminated in the proofs by Frink (1926) and König (1936). In modern textbooks Petersen's theorem is covered as an application of Tutte's theorem.

  3. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.

  4. Petersen graph - Wikipedia

    en.wikipedia.org/wiki/Petersen_graph

    Petersen graph as Kneser graph ,. The Petersen graph is the complement of the line graph of .It is also the Kneser graph,; this means that it has one vertex for each 2-element subset of a 5-element set, and two vertices are connected by an edge if and only if the corresponding 2-element subsets are disjoint from each other.

  5. 2-factor theorem - Wikipedia

    en.wikipedia.org/wiki/2-factor_theorem

    In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows: [ 1 ] Let G {\displaystyle G} be a regular graph whose degree is an even number, 2 k {\displaystyle 2k} .

  6. Category:Theorems in graph theory - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_in_graph...

    Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Perfect graph theorem; Petersen's theorem;

  7. Petersen family - Wikipedia

    en.wikipedia.org/wiki/Petersen_family

    The Petersen family. K 6 is at the top of the illustration, K 3,3,1 is in the upper right, and the Petersen graph is at the bottom. The blue links indicate ΔY- or YΔ-transforms between graphs in the family. In graph theory, the Petersen family is a set of seven undirected graphs that includes the Petersen graph and the complete graph K 6.

  8. Girth (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Girth_(graph_theory)

    A cubic graph (all vertices have degree three) of girth g that is as small as possible is known as a g-cage (or as a (3,g)-cage).The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. [3]

  9. Generalized Petersen graph - Wikipedia

    en.wikipedia.org/wiki/Generalized_Petersen_graph

    The Petersen graph, being a snark, has a chromatic index of 4: its edges require four colors. All other generalized Petersen graphs have chromatic index 3. These are the only possibilities, by Vizing's theorem. [12] The generalized Petersen graph G(9, 2) is one of the few graphs known to have only one 3-edge-coloring. [13]