Ads
related to: introduction to raman spectroscopy
Search results
Results from the WOW.Com Content Network
Energy-level diagram showing the states involved in Raman spectra. Raman spectroscopy (/ ˈ r ɑː m ən /) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. [1]
Raman spectroscopy is used to analyze a wide range of materials, including gases, liquids, and solids. Highly complex materials such as biological organisms and human tissue [26] can also be analyzed by Raman spectroscopy. For solid materials, Raman scattering is used as a tool to detect high-frequency phonon and magnon excitations.
It states that no normal modes can be both Infrared and Raman active in a molecule that possesses a center of symmetry. This is a powerful application of group theory to vibrational spectroscopy, and allows one to easily detect the presence of this symmetry element by comparison of the IR and Raman spectra generated by the same molecule. [1]
The Raman microscope is a laser-based microscopic device used to perform Raman spectroscopy. [1] The term MOLE (molecular optics laser examiner) is used to refer to the Raman-based microprobe. [ 1 ] The technique used is named after C. V. Raman , who discovered the scattering properties in liquids.
The term surface enhanced Raman spectroscopy implies that it provides the same information that traditional Raman spectroscopy does, simply with a greatly enhanced signal. While the spectra of most SERS experiments are similar to the non-surface enhanced spectra, there are often differences in the number of modes present.
Raman optical activity spectroscopy is related to Raman spectroscopy and circular dichroism. Recent studies have shown how by using optical vortex light beams, a distinct type of Raman optical activity that is sensitive to the orbital angular momentum of the incident light is manifest. [2]
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.
An example of spectroscopy: a prism analyses white light by dispersing it into its component colors. Spectroscopy is the field of study that measures and interprets electromagnetic spectrum. [1] [2] In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
Ads
related to: introduction to raman spectroscopy