Search results
Results from the WOW.Com Content Network
Ampère's right-hand grip rule, [6] also called the right-hand screw rule, coffee-mug rule or the corkscrew-rule; is used either when a vector (such as the Euler vector) must be defined to represent the rotation of a body, a magnetic field, or a fluid, or vice versa, when it is necessary to define a rotation vector to understand how rotation ...
Fleming's right-hand rule gives which direction the current flows. The right hand is held with the thumb, index finger and middle finger mutually perpendicular to each other (at right angles), as shown in the diagram. [1] The thumb is pointed in the direction of the motion of the conductor relative to the magnetic field.
The direction of the magnetic field at a point, the direction of the arrowheads on the magnetic field lines, which is the direction that the "north pole" of the compass needle points, can be found from the current by the right-hand rule. If the right hand is wrapped around the wire so the thumb points in the direction of the current ...
The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses. The strength of the field is directly proportional to the magnitude of the current. The strength of the field at any point is inversely proportional to the distance of the point from the wire.
Fleming's rules are a pair of visual mnemonics for determining the relative directions of magnetic field, electric current, and velocity of a conductor. [1]There are two rules, one is Fleming's left-hand rule for motors which applies to situations where an electric current induces motion in the conductor in the presence of magnetic fields (Lorentz force).
The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. [8]