enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum gravity - Wikipedia

    en.wikipedia.org/wiki/Quantum_gravity

    Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics.It deals with environments in which neither gravitational nor quantum effects can be ignored, [1] such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.

  3. Graviton - Wikipedia

    en.wikipedia.org/wiki/Graviton

    A theory of quantum gravity is needed in order to reconcile these differences. [16] Whether this theory should be background-independent is an open question. The answer to this question will determine the understanding of what specific role gravitation plays in the fate of the universe.

  4. Physics applications of asymptotically safe gravity - Wikipedia

    en.wikipedia.org/wiki/Physics_applications_of...

    Asymptotic safety, if realized in Nature, has far reaching consequences in all areas where quantum effects of gravity are to be expected. Their exploration, however, is still in its infancy. By now there are some phenomenological studies concerning the implications of asymptotic safety in particle physics , astrophysics and cosmology , for ...

  5. Higgs mechanism - Wikipedia

    en.wikipedia.org/wiki/Higgs_mechanism

    In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons.Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W +, W −, and Z 0 bosons actually have relatively large masses of around 80 ...

  6. Hierarchy problem - Wikipedia

    en.wikipedia.org/wiki/Hierarchy_problem

    More technically, the question is why the Higgs boson is so much lighter than the Planck mass (or the grand unification energy, or a heavy neutrino mass scale): one would expect that the large quantum contributions to the square of the Higgs boson mass would inevitably make the mass huge, comparable to the scale at which new physics appears ...

  7. Introduction to gauge theory - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_gauge_theory

    Although the function θ(x) describes a wave, the laws of quantum mechanics require that it also have particle properties. In the case of electromagnetism, the particle corresponding to electromagnetic waves is the photon. In general, such particles are called gauge bosons, where the term "boson" refers to a particle with integer spin. In the ...

  8. Schrödinger–Newton equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger–Newton_equation

    The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own ...

  9. Proca action - Wikipedia

    en.wikipedia.org/wiki/Proca_action

    In physics, specifically field theory and particle physics, the Proca action describes a massive spin-1 field of mass m in Minkowski spacetime.The corresponding equation is a relativistic wave equation called the Proca equation. [1]