enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    An initial value problem is a differential equation ′ = (, ()) with : where is an open set of , together with a point in the domain of (,),called the initial condition.. A solution to an initial value problem is a function that is a solution to the differential equation and satisfies

  3. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    In general, let be a value that is to be determined numerically, in the case of this article, for example, the value of the solution function of an initial value problem at a given point. A numerical method, for example a one-step method, calculates an approximate value v ~ ( h ) {\displaystyle {\tilde {v}}(h)} for this, which depends on the ...

  4. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner, Solving ordinary differential equations I: Nonstiff problems, second edition, Springer Verlag, Berlin, 1993. ISBN 3-540-56670-8. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.

  5. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  6. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    For the equation and initial value problem: ′ = (,), = if and / are continuous in a closed rectangle = [, +] [, +] in the plane, where and are real (symbolically: ,) and denotes the Cartesian product, square brackets denote closed intervals, then there is an interval = [, +] [, +] for some where the solution to the above equation and initial ...

  7. Chaplygin's theorem - Wikipedia

    en.wikipedia.org/wiki/Chaplygin's_Theorem

    Consider an initial value problem: differential equation ′ = (, ()) in [;], > with an initial condition =.For the initial value problem described above the upper boundary solution and the lower boundary solution are the functions ¯ and _ respectively, both of which are smooth in (;] and continuous in [;], such as the following inequalities are true:

  8. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Numerical methods for ordinary differential equations approximate solutions to initial value problems of the form ′ = (,), =.. The result is approximations for the value of () at discrete times : = +, where is the time step (sometimes referred to as ) and is an integer.

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.