enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Now, a = b, and the greatest common divisor is . Step 1 determines d as the highest power of 2 that divides a and b, and thus their greatest common divisor. None of the steps changes the set of the odd common divisors of a and b. This shows that when the algorithm stops, the result is correct.

  3. Gröbner basis - Wikipedia

    en.wikipedia.org/wiki/Gröbner_basis

    where gcd denotes the greatest common divisor of the leading monomials of f and g. As the monomials that are reducible by both f and g are exactly the multiples of lcm, one can deal with all cases of non-uniqueness of the reduction by considering only the S-polynomials. This is a fundamental fact for Gröbner basis theory and all algorithms for ...

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.

  5. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Now the product of the factors a − mb mod n can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers x and y, with x 2 − y 2 divisible by n and again with probability at least one half we get a factor of n by finding the greatest common divisor of n and x − y.

  6. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    It follows that this greatest common divisor is a non constant factor of (). Euclidean algorithm for polynomials allows computing this greatest common factor. For example, [ 10 ] if one know or guess that: P ( x ) = x 3 − 5 x 2 − 16 x + 80 {\displaystyle P(x)=x^{3}-5x^{2}-16x+80} has two roots that sum to zero, one may apply Euclidean ...

  7. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Combining two consecutive steps of these methods into a single test, one gets a rate of convergence of 9, at the cost of 6 polynomial evaluations (with Horner's rule). On the other hand, combining three steps of Newtons method gives a rate of convergence of 8 at the cost of the same number of polynomial evaluation.

  8. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

  9. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.