Search results
Results from the WOW.Com Content Network
An event, however, is any subset of the sample space, including any singleton set (an elementary event), the empty set (an impossible event, with probability zero) and the sample space itself (a certain event, with probability one). Other events are proper subsets of the sample space that contain multiple elements. So, for example, potential ...
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). [1] In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...
Figure 1: The left graph shows a probability density function. The right graph shows the cumulative distribution function. The value at a in the cumulative distribution equals the area under the probability density curve up to the point a. Absolutely continuous probability distributions can be described in several ways.
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
The root node represents the certain event and therefore has probability 1. Each set of sibling nodes represents an exclusive and exhaustive partition of the parent event. The probability associated with a node is the chance of that event occurring after the parent event occurs.
Graphs as defined in the two definitions above cannot have loops, because a loop joining a vertex to itself is the edge (for an undirected simple graph) or is incident on (for an undirected multigraph) {,} = {} which is not in {{,},}. To allow loops, the definitions must be expanded.