Search results
Results from the WOW.Com Content Network
A loop invariant is an assertion which must be true before the first loop iteration and remain true after each iteration. This implies that when a loop terminates correctly, both the exit condition and the loop invariant are satisfied. Loop invariants are used to monitor specific properties of a loop during successive iterations.
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
C++11 provides a foreach loop. ... in is the only kind of for loop in Python, the equivalent to the "counter" loop ... The loop calls the Iterator::next method on the ...
Functionality like these "finally" clauses can be implemented by a goto to the single return point of the subroutine. An alternative solution is to use the normal stack unwinding (variable deallocation) at function exit to unallocate resources, such as via destructors on local variables, or similar mechanisms such as Python's "with" statement.
Moreover, C++11 allows foreach loops to be applied to any class that provides the begin and end functions. It's then possible to write generator-like classes by defining both the iterable methods (begin and end) and the iterator methods (operator!=, operator++ and operator*) in the same class. For example, it is possible to write the following ...
The most common deviation from structured programming is early exit from a function or loop. At the level of functions, this is a return statement. At the level of loops, this is a break statement (terminate the loop) or continue statement (terminate the current iteration, proceed with next iteration). In structured programming, these can be ...
In computer programming, a sentinel value (also referred to as a flag value, trip value, rogue value, signal value, or dummy data) is a special value in the context of an algorithm which uses its presence as a condition of termination, typically in a loop or recursive algorithm.
Some CFG examples: (a) an if-then-else (b) a while loop (c) a natural loop with two exits, e.g. while with an if...break in the middle; non-structured but reducible (d) an irreducible CFG: a loop with two entry points, e.g. goto into a while or for loop A control-flow graph used by the Rust compiler to perform codegen.