Search results
Results from the WOW.Com Content Network
Carnitine O-acetyltransferase also called carnitine acetyltransferase (CRAT, or CAT) [5] (EC 2.3.1.7) is an enzyme that encoded by the CRAT gene that catalyzes the chemical reaction. acetyl-CoA + carnitine CoA + acetylcarnitine. where the acetyl group displaces the hydrogen atom in the central hydroxyl group of carnitine.
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
The result is an accumulation of fatty acid within muscles and liver, decreased tolerance to long term exercise, inability to fast for more than a few hours, muscle weakness and wasting, and a strong acidic smell on the breath (due to protein catabolism). Acyl-CoA from cytosol to the mitochondrial matrix
Cytosolic citrate, meaning citrate in the cytosol, is a key substrate for the generation of energy. It releases acetyl-CoA and provides NADPH for fatty acid synthesis, and, in subsequent pathways, generates NAD + for glycolysis. Citrate also activates acetyl-CoA carboxylase, an enzyme that is essential in the fatty acid synthesis pathway. [11]
Diglyceride acyltransferase (or O-acyltransferase), DGAT, catalyzes the formation of triglycerides (triacylglycerols) from diacylglycerol and acyl-CoA. [1] The reaction catalyzed by DGAT is considered the terminal and only committed step in the acyl-CoA-dependent triglyceride synthesis, universally important in animal, plants, and microorganisms.
Acetyl-CoA acetyltransferase, mitochondrial, also known as acetoacetyl-CoA thiolase, is an enzyme that in humans is encoded by the ACAT1 (Acetyl-Coenzyme A acetyltransferase 1) gene. [ 5 ] Acetyl-Coenzyme A acetyltransferase 1 is an acetyl-CoA C-acetyltransferase enzyme.
In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH 2, which are electron carriers used in the ...
General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain. Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this ...