enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.

  3. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The tangent half-angle substitution relates an angle to the slope of a line. Introducing a new variable = ⁡, sines and cosines can be expressed as rational functions of , and can be expressed as the product of and a rational function of , as follows: ⁡ = +, ⁡ = +, = +.

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Tangent half-angle formula - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle_formula

    The angle between the horizontal line and the shown diagonal is ⁠ 1 / 2 ⁠ (a + b). This is a geometric way to prove the particular tangent half-angle formula that says tan ⁠ 1 / 2 ⁠ (a + b) = (sin a + sin b) / (cos a + cos b). The formulae sin ⁠ 1 / 2 ⁠ (a + b) and cos ⁠ 1 / 2 ⁠ (a + b) are the ratios of the actual distances to ...

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    A calculation confirms that z(0) = 1, and z is a constant so z = 1 for all x, so the Pythagorean identity is established. A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine.

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = ⁡ (″) and the above approximation follows when tan X is replaced by X.

  8. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In the integral , we may use = ⁡, = ⁡, = ⁡. Then, = ⁡ ⁡ = ⁡ (⁡) = ⁡ ⁡ = = + = ⁡ +. The above step requires that > and ⁡ > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.

  9. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.