Search results
Results from the WOW.Com Content Network
We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.
Assuming the algebraic multiplicity m(λ) of an eigenvalue λ is known, the structure of the Jordan form can be ascertained by analyzing the ranks of the powers (A − λI) m(λ). To see this, suppose an n × n matrix A has only one eigenvalue λ. So m(λ) = n. The smallest integer k 1 such that =
Since r 1 has multiplicity k, the differential equation can be factored into [1] = The fact that y p (x) = c 1 e r 1 x is one solution allows one to presume that the general solution may be of the form y(x) = u(x)e r 1 x, where u(x) is a function to be determined.
In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, [1] allows for multiple instances for each of its elements.The number of instances given for each element is called the multiplicity of that element in the multiset.
This proves Bézout's theorem, if the multiplicity of a common zero is defined as the multiplicity of the corresponding linear factor of the U-resultant. As for the preceding proof, the equality of this multiplicity with the definition by deformation results from the continuity of the U -resultant as a function of the coefficients of the f i ...
The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
The multiplicity of a root λ of μ A is the largest power m such that ker((A − λI n) m) strictly contains ker((A − λI n) m−1). In other words, increasing the exponent up to m will give ever larger kernels, but further increasing the exponent beyond m will just give the same kernel.