Search results
Results from the WOW.Com Content Network
The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...
In 1985 he demonstrated stable and unstable rotation of a T-handle nut from the orbit, subsequently named the Dzhanibekov effect. The effect had been long known from the tennis racket theorem, which says that rotation about an object's intermediate principal axis is unstable while in free fall. In 1985 he was promoted to the rank of major ...
As described in the tennis racket theorem, rotation of an object around its first or third principal axis is stable, while rotation around its second principal axis (or intermediate axis) is not. The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body.
is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass m initially at rest between a fixed wall and another object of mass b 2N m, when struck by the other object. [1] (This gives the digits of π in base b up to N digits past the radix point.)
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
In calculus, the racetrack principle describes the movement and growth of two functions in terms of their derivatives.. This principle is derived from the fact that if a horse named Frank Fleetfeet always runs faster than a horse named Greg Gooseleg, then if Frank and Greg start a race from the same place and the same time, then Frank will win.
Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , the Gaussian or ordinary hypergeometric function 2 F 1 ( a , b ; c ; z ) is a special function represented by the hypergeometric series , that ...