enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. [42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1,674.4 km/h = 1,470.2 km/h.

  3. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  4. Template:Infobox planet - Wikipedia

    en.wikipedia.org/wiki/Template:Infobox_planet

    Where G = 6.6742 × 10 −11 m 3 s −2 kg −1 is the Gravitational constant, M is the mass of the body, and r its radius. This value is very approximate, as most minor planets are far from spherical. For irregularly shaped bodies, the surface gravity will differ appreciably with location.

  5. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The speed of the planet in the main orbit is constant. Despite being correct in saying that the planets revolved around the Sun, Copernicus was incorrect in defining their orbits. Introducing physical explanations for movement in space beyond just geometry, Kepler correctly defined the orbit of planets as follows: [1] [2] [5]: 53–54

  6. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).

  7. Earth orientation parameters - Wikipedia

    en.wikipedia.org/wiki/Earth_Orientation_Parameters

    Any motion of mass in or on Earth causes a slowdown or speedup of the rotation speed, or a change of rotation axis. Small motions produce changes too small to be measured, but movements of very large mass, like sea currents , tides , or those resulting from earthquakes , can produce discernible changes in the rotation and can change very ...

  8. Solar rotation - Wikipedia

    en.wikipedia.org/wiki/Solar_rotation

    At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).

  9. Exoplanet orbital and physical parameters - Wikipedia

    en.wikipedia.org/wiki/Exoplanet_orbital_and...

    With the exoplanet sample known in 2009, a group of astronomers estimated that "(1) around 35% of the published eccentric one-planet solutions are statistically indistinguishable from planetary systems in 2:1 orbital resonance, (2) another 40% cannot be statistically distinguished from a circular orbital solution" and "(3) planets with masses ...