Search results
Results from the WOW.Com Content Network
The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. [42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1,674.4 km/h = 1,470.2 km/h.
Original file (WebM audio/video file, VP9, length 1 min 20 s, 1,920 × 1,080 pixels, 1.12 Mbps overall, file size: 10.64 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
The speed of the planet in the main orbit is constant. Despite being correct in saying that the planets revolved around the Sun, Copernicus was incorrect in defining their orbits. Introducing physical explanations for movement in space beyond just geometry, Kepler correctly defined the orbit of planets as follows: [1] [2] [5]: 53–54
Any motion of mass in or on Earth causes a slowdown or speedup of the rotation speed, or a change of rotation axis. Small motions produce changes too small to be measured, but movements of very large mass, like sea currents , tides , or those resulting from earthquakes , can produce discernible changes in the rotation and can change very ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).