enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.

  3. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    For example, multilayer perceptron (MLPs) and time delay neural network (TDNNs) have limitations on the input data flexibility, as they require their input data to be fixed. Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state.

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    An Elman network is a three-layer network (arranged horizontally as x, y, and z in the illustration) with the addition of a set of context units (u in the illustration). The middle (hidden) layer is connected to these context units fixed with a weight of one. [51] At each time step, the input is fed forward and a learning rule is applied. The ...

  5. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    The perceptron learning rule originates from the Hebbian assumption, and was used by Frank Rosenblatt in his perceptron in 1958. The net is passed to the activation function and the function's output is used for adjusting the weights. The learning signal is the difference between the desired response and the actual response of a neuron.

  6. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.

  7. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  8. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...

  9. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    An artificial neural network (ANN) combines biological principles with advanced statistics to solve problems in domains such as pattern recognition and game-play. ANNs adopt the basic model of neuron analogues connected to each other in a variety of ways.