Search results
Results from the WOW.Com Content Network
The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams, or to collect them into one discharge stream, such as in fuel cells, heat exchangers, radial flow reactors, hydronics, fire protection, and irrigation. Manifolds can usually be ...
P&IDs are originally drawn up at the design stage from a combination of process flow sheet data, the mechanical process equipment design, and the instrumentation engineering design. During the design stage, the diagram also provides the basis for the development of system control schemes, allowing for further safety and operational ...
This page was last edited on 4 February 2012, at 16:45 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.
Stochastic analysis on manifolds investigates stochastic processes on non-linear state spaces or manifolds. Classical theory can be reformulated in a coordinate-free representation. In that, it is often complicated (or not possible) to formulate objects with coordinates of R d {\displaystyle \mathbb {R} ^{d}} .
Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.