enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    [6] [7] [a] The parentheses can be omitted if the input is a single numerical variable or constant, [2] as in the case of sin x = sin(x) and sin π = sin(π). [a] Traditionally this convention extends to monomials; thus, sin 3x = sin(3x) and even sin ⁠ 1 / 2 ⁠ xy = sin(xy/2), but sin x + y = sin(x) + y, because x + y is not a monomial ...

  4. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The sign of the square root needs to be chosen properly—note that if 2 π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ.

  5. Rule of product - Wikipedia

    en.wikipedia.org/wiki/Rule_of_product

    In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the intuitive idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions. [1] [2]

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × 10 9,808,357. Similarly, factorials can be approximated by summing the logarithms of the ...

  7. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For example, let a denote a multiplicative generator of the group of units of F 4, the Galois field of order four (thus a and a + 1 are roots of x 2 + x + 1 over F 4. Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0.

  8. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    The model is based on treating (x,y) as equivalent to xy when x and y are treated as integers. Thus both (0,1) and (1,2) are equivalent to −1. The multiplication axiom for integers defined this way is (,) (,) = (+, +). The rule that −1 × −1 = 1 can then be deduced from

  9. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...