enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    There are two pathways of electron transfer. In cyclic electron transfer, electrons are removed from an excited chlorophyll molecule, passed through an electron transport chain to a proton pump, and then returned to the chlorophyll. The mobile electron carriers are, as usual, a lipid-soluble quinone and a water-soluble cytochrome.

  3. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin.

  4. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    In intense light, plants use various mechanisms to prevent damage to their photosystems. They are able to release some light energy as heat, but the excess light can also produce reactive oxygen species. While some of these can be detoxified by antioxidants, the remaining oxygen species will be detrimental to the photosystems of the plant. More ...

  5. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In cyclic photophosphorylation, the high-energy electron released from P700, a pigment in a complex called photosystem I, flows in a cyclic pathway. The electron starts in photosystem I, passes from the primary electron acceptor to ferredoxin and then to plastoquinone , next to cytochrome b 6 f (a similar complex to that found in mitochondria ...

  6. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The simpler C3 cycle which operates in most plants is adapted to wetter darker environments, such as many northern latitudes. [citation needed] Maize, sugar cane, and sorghum are C4 plants. These plants are economically important in part because of their relatively high photosynthetic efficiencies compared to many other crops. Pineapple is a ...

  7. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Plants that do not use PEP-carboxylase in carbon fixation are called C 3 plants because the primary carboxylation reaction, catalyzed by RuBisCO, produces the three-carbon 3-phosphoglyceric acids directly in the Calvin-Benson cycle. Over 90% of plants use C 3 carbon fixation, compared to 3% that use C 4 carbon fixation; [32] however, the ...

  8. Listen to the sound plants make when they are 'stressed' - AOL

    www.aol.com/news/stressed-plants-emit-sounds...

    For the first time in the world, researchers at Tel Aviv University recorded and analyzed sounds distinctly emitted by plants. The click-like sounds, similar to the popping of popcorn, are emitted ...

  9. Phonotropism - Wikipedia

    en.wikipedia.org/wiki/Phonotropism

    Phonotropism is the growth of organisms in response to sound stimuli. Root phonotropism is when the roots of a plant grow towards or away in response to a sound source. Acoustic cues are detected by the plant as sound waves which then induces a mechanistic response that changes plant behavior.