enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Conversely, the inverse Fourier transform of a momentum space function is a position space function. These quantities and ideas transcend all of classical and quantum physics, and a physical system can be described using either the positions of the constituent particles, or their momenta, both formulations equivalently provide the same ...

  3. Quantum logic - Wikipedia

    en.wikipedia.org/wiki/Quantum_logic

    Now, position and momentum are Fourier transforms of each other, and the Fourier transform of a square-integrable nonzero function with a compact support is entire and hence does not have non-isolated zeroes. Therefore, there is no wave function that is both normalizable in momentum space and vanishes on precisely x ≥ 0.

  4. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    Since the partial derivative is a linear operator, the momentum operator is also linear, and because any wave function can be expressed as a superposition of other states, when this momentum operator acts on the entire superimposed wave, it yields the momentum eigenvalues for each plane wave component. These new components then superimpose to ...

  5. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the ...

  6. Propagator - Wikipedia

    en.wikipedia.org/wiki/Propagator

    The Fourier transform of the position space propagators can be thought of as propagators in momentum space. These take a much simpler form than the position space propagators. They are often written with an explicit ε term although this is understood to be a reminder about which integration contour is appropriate (see above).

  7. Renormalization group - Wikipedia

    en.wikipedia.org/wiki/Renormalization_group

    Renormalization groups, in practice, come in two main "flavors". The Kadanoff picture explained above refers mainly to the so-called real-space RG. Momentum-space RG on the other hand, has a longer history despite its relative subtlety. It can be used for systems where the degrees of freedom can be cast in terms of the Fourier modes of

  8. Scalar field theory - Wikipedia

    en.wikipedia.org/wiki/Scalar_field_theory

    The most basic scalar field theory is the linear theory. Through the Fourier decomposition of the fields, it represents the normal modes of an infinity of coupled oscillators where the continuum limit of the oscillator index i is now denoted by x.

  9. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    Integrating over all different values of φ(x) is equivalent to integrating over all Fourier modes, because taking a Fourier transform is a unitary linear transformation of field coordinates. When you change coordinates in a multidimensional integral by a linear transformation, the value of the new integral is given by the determinant of the ...