Search results
Results from the WOW.Com Content Network
An exponentially stable LTI system is one that will not "blow up" (i.e., give an unbounded output) when given a finite input or non-zero initial condition. Moreover, if the system is given a fixed, finite input (i.e., a step ), then any resulting oscillations in the output will decay at an exponential rate , and the output will tend ...
D is calculated as D = | A + I - 1 |. This metric is an indicator of the package's balance between abstractness and stability. A package squarely on the main sequence is optimally balanced with respect to its abstractness and stability. Ideal packages are either completely abstract and stable (I=0, A=1) or completely concrete and unstable (I=1 ...
If all eigenvalues of J are real or complex numbers with absolute value strictly less than 1 then a is a stable fixed point; if at least one of them has absolute value strictly greater than 1 then a is unstable. Just as for n =1, the case of the largest absolute value being 1 needs to be investigated further — the Jacobian matrix test is ...
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.
A matrix () is called a fundamental matrix solution if the columns form a basis of the solution set. A matrix Φ ( t ) {\displaystyle \Phi (t)} is called a principal fundamental matrix solution if all columns are linearly independent solutions and there exists t 0 {\displaystyle t_{0}} such that Φ ( t 0 ) {\displaystyle \Phi (t_{0})} is the ...
In certain cases, von Neumann stability is necessary and sufficient for stability in the sense of Lax–Richtmyer (as used in the Lax equivalence theorem): The PDE and the finite difference scheme models are linear; the PDE is constant-coefficient with periodic boundary conditions and has only two independent variables; and the scheme uses no ...
For a rational and continuous-time system, the condition for stability is that the region of convergence (ROC) of the Laplace transform includes the imaginary axis.When the system is causal, the ROC is the open region to the right of a vertical line whose abscissa is the real part of the "largest pole", or the pole that has the greatest real part of any pole in the system.