Search results
Results from the WOW.Com Content Network
The oldest known tables using a base of 10 are the Chinese decimal multiplication table on bamboo strips dating to about 305 BC, during China's Warring States period. [2] "Table of Pythagoras" on Napier's bones [3] The multiplication table is sometimes attributed to the ancient Greek mathematician Pythagoras (570–495 BC).
Four bags with three marbles per bag gives twelve marbles (4 × 3 = 12). Multiplication can also be thought of as scaling. Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit.
[2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...
2.3 Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship 2.4 Modified-factorial denominators 2.5 Binomial coefficients
The first tables of trigonometric functions known to be made were by Hipparchus (c.190 – c.120 BCE) and Menelaus (c.70–140 CE), but both have been lost. Along with the surviving table of Ptolemy (c. 90 – c.168 CE), they were all tables of chords and not of half-chords, that is, the sine function. [1]
The sum of the reciprocals of the pentatope numbers is 4 / 3 . Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one. The first few terms of the sequence are 2, 3, 7, 43, 1807 . The sum of the reciprocals of the numbers in Sylvester's sequence is 1.
The tablets also include multiplication tables and methods for solving linear and quadratic equations. The Babylonian tablet YBC 7289 gives an approximation of √ 2 that is accurate to an equivalent of six decimal places. Babylonian mathematics were written using a sexagesimal (base-60) numeral system.
Sometimes this remainder is added to the quotient as a fractional part, so 10 / 3 is equal to 3 + 1 / 3 or 3.33..., but in the context of integer division, where numbers have no fractional part, the remainder is kept separately (or exceptionally, discarded or rounded). [5] When the remainder is kept as a fraction, it leads to a rational ...