Search results
Results from the WOW.Com Content Network
A magnet's North pole is defined as the pole that is attracted by the Earth's North Magnetic Pole, in the arctic region, when the magnet is suspended so it can turn freely. Since opposite poles attract, the North Magnetic Pole of the Earth is really the south pole of its magnetic field (the place where the field is directed downward into the ...
If the Earth's magnetic field were a perfect dipole, the field lines would be vertical to the surface at the Geomagnetic Poles, and they would align with the North and South magnetic poles, with the North Magnetic Pole at the south end of dipole. However, the approximation is imperfect, and so the Magnetic and Geomagnetic Poles lie some ...
The magnetic declination in a given area may (most likely will) change slowly over time, possibly as little as 2–2.5 degrees every hundred years or so, depending on where it is measured. For a location close to the pole like Ivujivik, the declination may change by 1 degree every three
British explorer Sir James Clark Ross discovered the magnetic north pole in 1831 in northern Canada, approximately 1,000 miles (1,609 kilometers) south of the true North Pole.
The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind, the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells. For ...
The south magnetic pole, also known as the magnetic south pole, is the point on Earth's Southern Hemisphere where the geomagnetic field lines are directed perpendicular to the nominal surface. The Geomagnetic South Pole, a related point, is the south pole of an ideal dipole model of the Earth's magnetic field that most closely fits the Earth's ...
Compass needles in the Northern Hemisphere point toward the magnetic North Pole, although the exact location of it changes from time to time as the contours of Earth’s magnetic field also change.
The Earth's Magnetic North Pole is actually considered the "south pole" in terms of a typical magnet, meaning that the north pole of a magnet would be attracted to the Earth's magnetic north pole. [2] The north magnetic pole moves over time according to magnetic changes and flux lobe elongation [3] in the Earth's outer core. [4]