enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    If the cross product of two vectors is the zero vector (that is, a × b = 0), then either one or both of the inputs is the zero vector, (a = 0 or b = 0) or else they are parallel or antiparallel (a ∥ b) so that the sine of the angle between them is zero (θ = 0° or θ = 180° and sin θ = 0). The self cross product of a vector is the zero ...

  3. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  5. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    There are multiple ways to derive/prove each logarithm law – this is just one possible method. ... We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × 10 9,808,357.

  7. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    The multiplicative identity of R[x] is the polynomial x 0; that is, x 0 times any polynomial p(x) is just p(x). [2] Also, polynomials can be evaluated by specializing x to a real number. More precisely, for any given real number r, there is a unique unital R-algebra homomorphism ev r : R[x] → R such that ev r (x) = r. Because ev r is unital ...

  8. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    Cartesian product of the sets {x,y,z} and {1,2,3}In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. [1]

  9. Lagrange's identity - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity

    Lagrange's identity for complex numbers has been obtained from a straightforward product identity. A derivation for the reals is obviously even more succinct. Since the Cauchy–Schwarz inequality is a particular case of Lagrange's identity, [4] this proof is yet another way to obtain the CS inequality. Higher order terms in the series produce ...