enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]

  4. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]

  5. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    The choice of BFS is not constrained, as long as the output BFS tree is correct. The correctness of result is based on the comparison with result from referenced BFS. Because only 64 search key are sampled to runs kernel 2 and/or kernel 3, the result is also considered correct when this result is different from referenced result only because ...

  6. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  7. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.

  8. Strongly connected component - Wikipedia

    en.wikipedia.org/wiki/Strongly_connected_component

    Several algorithms based on depth-first search compute strongly connected components in linear time.. Kosaraju's algorithm uses two passes of depth-first search. The first, in the original graph, is used to choose the order in which the outer loop of the second depth-first search tests vertices for having been visited already and recursively explores them if not.

  9. Biconnected component - Wikipedia

    en.wikipedia.org/wiki/Biconnected_component

    The idea is to run a depth-first search while maintaining the following information: the depth of each vertex in the depth-first-search tree (once it gets visited), and; for each vertex v, the lowest depth of neighbors of all descendants of v (including v itself) in the depth-first-search tree, called the lowpoint.