Search results
Results from the WOW.Com Content Network
A third- or fourth-order acoustic crossover often has just a second-order electrical filter. This requires that speaker drivers be well behaved a considerable way from the nominal crossover frequency, and further that the high-frequency driver be able to survive a considerable input in a frequency range below its crossover point.
In 1975 Ed Long [1] in cooperation with Ronald J. Wickersham invented the first technique to Time-Align a loudspeaker systems. In 1976 Long presented "A Time-Align Technique for Loudspeakers System Design" [2] at the 54th AES convention demonstrating the use of the Time-Align generator to design improved crossover networks for multi-way loudspeakers systems.
The midwoofer-tweeter-midwoofer loudspeaker configuration (called MTM, for short) was a design arrangement from the late 1960s that suffered from serious lobing issues that prevented its popularity until it was perfected by Joseph D'Appolito as a way of correcting the inherent lobe tilting of a typical mid-tweeter (MT) configuration, at the crossover frequency, unless time-aligned. [1]
Second-order Linkwitz–Riley crossovers (LR2) have a 12 dB/octave (40 dB/decade) slope. They can be realized by cascading two one-pole filters or using a Sallen Key filter topology with a Q 0 value of 0.5. There is a 180° phase difference between the low-pass and high-pass output of the filter, which can be corrected by inverting one signal.
An acoustic transmission line is the use of a long duct, which acts as an acoustic waveguide and is used to produce or transmit sound in an undistorted manner. Technically it is the acoustic analog of the electrical transmission line , typically conceived as a rigid-walled duct or tube, that is long and thin relative to the wavelength of sound ...
A number of methods have been developed to estimate the actual audibility of THD, used to quantify crossover distortion or loudspeaker rub and buzz, such as "high-order harmonic distortion" (HOHD) or "higher harmonic distortion" (HHD) which measures only the 10th and higher harmonics, or metrics that apply psychoacoustic loudness curves to the ...
The ratio between two acoustic pressures in deciBels is expressed by the equation dB = 20log(p1/p2), so for every doubling of distance from the point source p1 = 1 and p2 = 2, thus there is a sound pressure decrease of approximately 6 dB. A line source is a hypothetical one-dimensional source of a sound, as opposed to a dimensionless point ...
A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device: