Search results
Results from the WOW.Com Content Network
The mapping of characters to code-points and back can be implemented in a number of ways. The simplest approach (akin to the original Luhn algorithm) is to use ASCII code arithmetic. For example, given an input set of 0 to 9, the code-point can be calculated by subtracting the ASCII code for '0' from the ASCII code of the desired character. The ...
The Luhn mod N algorithm is an extension that supports non-numerical strings. Because the algorithm operates on the digits in a right-to-left manner and zero digits affect the result only if they cause shift in position, zero-padding the beginning of a string of numbers does not affect the calculation.
Comparison of Java and .NET platforms ALGOL 58's influence on ALGOL 60; ALGOL 60: Comparisons with other languages; Comparison of ALGOL 68 and C++; ALGOL 68: Comparisons with other languages; Compatibility of C and C++; Comparison of Pascal and Borland Delphi; Comparison of Object Pascal and C; Comparison of Pascal and C; Comparison of Java and C++
If n is greater than the length of the string then most implementations return the whole string (exceptions exist – see code examples). Note that for variable-length encodings such as UTF-8 , UTF-16 or Shift-JIS , it can be necessary to remove string positions at the end, in order to avoid invalid strings.
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
For example, the number 457 is actually 4×10 2 + 5×10 1 + 7×10 0, where base 10 is presumed but not shown explicitly. Initially, we will convert DABDDB into a base-6 numeral, because 6 is the length of the string. The string is first mapped into the digit string 301331, which then maps to an integer by the polynomial:
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.