enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    Aerogel is a very low density solid that can be produced with refractive index in the range from 1.002 to 1.265. [16] Moissanite lies at the other end of the range with a refractive index as high as 2.65. Most plastics have refractive indices in the range from 1.3 to 1.7, but some high-refractive-index polymers can have values as high as 1.76. [17]

  3. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.

  4. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.

  5. Refraction (sound) - Wikipedia

    en.wikipedia.org/wiki/Refraction_(sound)

    Refraction, in acoustics, comparable to the refraction of electromagnetic radiation, is the bending of sound propagation trajectories (rays) in inhomogeneous elastic media (gases, liquids, and solids) in which the wave velocity is a function of spatial coordinates. Bending of acoustic rays in layered inhomogeneous media occurs towards a layer ...

  6. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...

  7. Acousto-optics - Wikipedia

    en.wikipedia.org/wiki/Acousto-optics

    Sound waves produce a refractive index grating in the material, and it is this grating that is "seen" by the light wave. [1] These variations in the refractive index, due to the pressure fluctuations, may be detected optically by refraction, diffraction, and interference effects; [ 2 ] reflection may also be used.

  8. Refraction - Wikipedia

    en.wikipedia.org/wiki/Refraction

    In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. [1] Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave ...

  9. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.