Search results
Results from the WOW.Com Content Network
It then follows that the eigenvectors of A form a basis if and only if A is diagonalizable. A matrix that is not diagonalizable is said to be defective. For defective matrices, the notion of eigenvectors generalizes to generalized eigenvectors and the diagonal matrix of eigenvalues generalizes to the Jordan normal form.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Using generalized eigenvectors, a set of linearly independent eigenvectors of can be extended, if necessary, to a complete basis for . [8] This basis can be used to determine an "almost diagonal matrix" J {\displaystyle J} in Jordan normal form , similar to A {\displaystyle A} , which is useful in computing certain matrix functions of A ...
If A is Hermitian and full-rank, the basis of eigenvectors may be chosen to be mutually orthogonal. The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0.
Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.
If a subset of the orthonormal basis was used to find the matrix, the eigenvectors of will be linear combinations of orthonormal basis functions, and as a result they will be approximations of the eigenvectors of . [7]
In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...
Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix. Define the linear map T : V → V pointwise by Tx = Mx, where on the right-hand side x is interpreted as a column vector and M acts on x by matrix multiplication. We now say that x ∈ V is an eigenvector of M if x is an eigenvector of T.