Search results
Results from the WOW.Com Content Network
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
Plugging this into the divergence theorem produces Green's theorem, = ^. Suppose that the linear differential operator L is the Laplacian , ∇ 2 , and that there is a Green's function G for the Laplacian.
Since in Green's theorem = (,) is a vector pointing tangential along the curve, and the curve C is the positively oriented (i.e. anticlockwise) curve along the boundary, an outward normal would be a vector which points 90° to the right of this; one choice would be (,).
is the derivative of the Green's function along the inward-pointing unit normal vector ^. The integration is performed on the boundary, with measure d s {\displaystyle ds} . The function ν ( s ) {\displaystyle \nu (s)} is given by the unique solution to the Fredholm integral equation of the second kind,
This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
The alternative notation given doesn't indicate the integral is calculated using the positive orientation of C. It just tells the integral is calculated over a closed curve.
An important aspect in the study of elliptic curves is devising effective ways of counting points on the curve.There have been several approaches to do so, and the algorithms devised have proved to be useful tools in the study of various fields such as number theory, and more recently in cryptography and Digital Signature Authentication (See elliptic curve cryptography and elliptic curve DSA).