Search results
Results from the WOW.Com Content Network
An attack called POODLE [19] (late 2014) combines both a downgrade attack (to SSL 3.0) with a padding oracle attack on the older, insecure protocol to enable compromise of the transmitted data. In May 2016 it has been revealed in CVE-2016-2107 that the fix against Lucky Thirteen in OpenSSL introduced another timing-based padding oracle. [20] [21]
A disadvantage of padding is that it makes the plain text of the message susceptible to padding oracle attacks. Padding oracle attacks allow the attacker to gain knowledge of the plain text without attacking the block cipher primitive itself. Padding oracle attacks can be avoided by making sure that an attacker cannot gain knowledge about the ...
The attacker can then combine the oracle with a systematic search of the problem space to complete their attack. [1] The padding oracle attack, and compression oracle attacks such as BREACH, are examples of oracle attacks, as was the practice of "crib-dragging" in the cryptanalysis of the Enigma machine. An oracle need not be 100% accurate ...
In cryptography, Optimal Asymmetric Encryption Padding (OAEP) is a padding scheme often used together with RSA encryption. OAEP was introduced by Bellare and Rogaway , [ 1 ] and subsequently standardized in PKCS#1 v2 and RFC 2437.
The attack uses the padding as an oracle. [4] [5] PKCS #1 was subsequently updated in the release 2.0 and patches were issued to users wishing to continue using the old version of the standard. [3] However, the vulnerable padding scheme remains in use and has resulted in subsequent attacks:
While many popular schemes described in standards and in the literature have been shown to be vulnerable to padding oracle attacks, [31] [32] a solution that adds a one-bit and then extends the last block with zero-bits, standardized as "padding method 2" in ISO/IEC 9797-1, [33] has been proven secure against these attacks. [32]
It is a new variant of Serge Vaudenay's padding oracle attack that was previously thought to have been fixed, that uses a timing side-channel attack against the message authentication code (MAC) check stage in the TLS algorithm to break the algorithm in a way that was not fixed by previous attempts to mitigate Vaudenay's attack.
The adversary generates two equal-length messages and , and transmits them to a challenge oracle along with the public key. The challenge oracle selects one of the messages by flipping a fair coin (selecting a random bit b ∈ { 0 , 1 } {\displaystyle b\in \{0,1\}} ), encrypts the message m b {\displaystyle m_{b}} under the public key, and ...