enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x ...

  3. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion.

  4. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The multiplicative inverse x ≡ a −1 (mod m) may be efficiently computed by solving Bézout's equation a x + m y = 1 for x, y, by using the Extended Euclidean algorithm. In particular, if p is a prime number, then a is coprime with p for every a such that 0 < a < p ; thus a multiplicative inverse exists for all a that is not congruent to ...

  6. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : XX that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  7. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    An element y is called (simply) an inverse of x if xyx = x and y = yxy. Every regular element has at least one inverse: if x = xzx then it is easy to verify that y = zxz is an inverse of x as defined in this section. Another easy to prove fact: if y is an inverse of x then e = xy and f = yx are idempotents, that is ee = e and ff = f.

  8. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    An element x is called invertible if there exists an element y such that xy = e and yx = e. The element y is called the inverse of x. Inverses, if they exist, are unique: if y and z are inverses of x, then by associativity y = ey = (zx)y = z(xy) = ze = z. [6] If x is invertible, say with inverse y, then one can define negative powers ...

  9. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    An nth root of unity is a complex number whose nth power is 1, a root of the polynomial x n − 1. The set of all nth roots of unity forms a cyclic group of order n under multiplication. [1] The generators of this cyclic group are the nth primitive roots of unity; they are the roots of the nth cyclotomic polynomial.