Search results
Results from the WOW.Com Content Network
Stochastic social science theory is similar to systems theory in that events are interactions of systems, although with a marked emphasis on unconscious processes. The event creates its own conditions of possibility, rendering it unpredictable if simply for the number of variables involved.
A computer-simulated realization of a Wiener or Brownian motion process on the surface of a sphere. The Wiener process is widely considered the most studied and central stochastic process in probability theory. [1] [2] [3]
In probability theory and statistics, the term Markov property refers to the memoryless property of a stochastic process, which means that its future evolution is independent of its history. It is named after the Russian mathematician Andrey Markov .
The exponential distribution is popular, for example, in queuing theory when we want to model the time we have to wait until a certain event takes place. Examples include the time until the next client enters the store, the time until a certain company defaults or the time until some machine has a defect. [4]
The first relation between supersymmetry and stochastic dynamics was established in two papers in 1979 and 1982 by Giorgio Parisi and Nicolas Sourlas, [1] [2] where Langevin SDEs -- SDEs with linear phase spaces, gradient flow vector fields, and additive noises -- were given supersymmetric representation with the help of the BRST gauge fixing procedure.
For example, the transition probabilities from 5 to 4 and 5 to 6 are both 0.5, and all other transition probabilities from 5 are 0. These probabilities are independent of whether the system was previously in 4 or 6. A series of independent states (for example, a series of coin flips) satisfies the formal definition of a Markov chain.
where y is an n × 1 vector of observable state variables, u is a k × 1 vector of control variables, A t is the time t realization of the stochastic n × n state transition matrix, B t is the time t realization of the stochastic n × k matrix of control multipliers, and Q (n × n) and R (k × k) are known symmetric positive definite cost matrices.
In more formal probability theory, a random variable is a function X defined from a sample space Ω to a measurable space called the state space. [2] [a] If an element in Ω is mapped to an element in state space by X, then that element in state space is a realization.