enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    Prompt injection is a family of related computer security exploits carried out by getting a machine learning model (such as an LLM) which was trained to follow human-given instructions to follow instructions provided by a malicious user. This stands in contrast to the intended operation of instruction-following systems, wherein the ML model is ...

  3. Prompt injection - Wikipedia

    en.wikipedia.org/wiki/Prompt_injection

    Prompt injection is a family of related computer security exploits carried out by getting a machine learning model which was trained to follow human-given instructions (such as an LLM) to follow instructions provided by a malicious user. This stands in contrast to the intended operation of instruction-following systems, wherein the ML model is ...

  4. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]

  5. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    For example, training of the GPT-2 (i.e. a 1.5-billion-parameters model) in 2019 cost $50,000, while training of the PaLM (i.e. a 540-billion-parameters model) in 2022 cost $8 million, and Megatron-Turing NLG 530B (in 2021) cost around $11 million. [56] For Transformer-based LLM, training cost is much higher than inference cost.

  6. Help:Cheatsheet - Wikipedia

    en.wikipedia.org/wiki/Help:Cheatsheet

    sources in the article will appear where {{reflist}} is put, typically under a level 2 section heading (see below) towards the bottom of the page; text between {{}} is for a template.

  7. Logic learning machine - Wikipedia

    en.wikipedia.org/wiki/Logic_learning_machine

    Logic learning machine (LLM) is a machine learning method based on the generation of intelligible rules. LLM is an efficient implementation of the Switching Neural Network (SNN) paradigm, [ 1 ] developed by Marco Muselli, Senior Researcher at the Italian National Research Council CNR-IEIIT in Genoa .

  8. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  9. Gemini (language model) - Wikipedia

    en.wikipedia.org/wiki/Gemini_(language_model)

    The second generation of Gemini ("Gemini 1.5") has two models. Gemini 1.5 Pro is a multimodal sparse mixture-of-experts, with a context length in the millions, while Gemini 1.5 Flash is distilled from Gemini 1.5 Pro, with a context length above 2 million. [45] Gemma 2 27B is trained on web documents, code, science articles.