Search results
Results from the WOW.Com Content Network
Because quarks have a spin 1 / 2 , the difference in quark number between mesons and baryons results in conventional two-quark mesons being bosons, whereas baryons are fermions. Each type of meson has a corresponding antiparticle (antimeson) in which quarks are replaced by their corresponding antiquarks and vice versa.
Composite particles (such as hadrons, nuclei, and atoms) can be bosons or fermions depending on their constituents. Since bosons have integer spin and fermions odd half-integer spin, any composite particle made up of an even number of fermions is a boson. Composite bosons include: All mesons of every type
Bosons are one of the two fundamental particles having integral spinclasses of particles, the other being fermions. Bosons are characterized by Bose–Einstein statistics and all have integer spins. Bosons may be either elementary, like photons and gluons, or composite, like mesons. According to the Standard Model, the elementary bosons are:
Mesons named with the letter "f" are scalar mesons (as opposed to a pseudo-scalar meson), and mesons named with the letter "a" are axial-vector mesons (as opposed to an ordinary vector meson) a.k.a. an isoscalar vector meson, while the letters "b" and "h" refer to axial-vector mesons with positive parity, negative C-parity, and quantum numbers I G of 1 + and 0 − respectively.
Bosons differ from fermions in the fact that multiple bosons can occupy the same quantum state (Pauli exclusion principle). Also, bosons can be either elementary, like photons, or a combination, like mesons. The spin of bosons are integers instead of half integers.
There are two main categories of identical particles: bosons, which can share quantum states, and fermions, which cannot (as described by the Pauli exclusion principle). Examples of bosons are photons, gluons, phonons, helium-4 nuclei and all mesons. Examples of fermions are electrons, neutrinos, quarks, protons, neutrons, and helium-3 nuclei.
These include glueballs and hybrid mesons (mesons bound by excited gluons). Because mesons have an even number of quarks, they are also all bosons, with integer spin, i.e., 0, +1, or −1. They have baryon number B = 1 / 3 − 1 / 3 = 0 . Examples of mesons commonly produced in particle physics experiments include pions and kaons.
The number of bosons within a composite particle made up of simple particles bound with a potential has no effect on whether it is a boson or a fermion. Fermionic or bosonic behavior of a composite particle (or system) is only seen at large (compared to size of the system) distances.