Search results
Results from the WOW.Com Content Network
In a circularly linked list, all nodes are linked in a continuous circle, without using null. For lists with a front and a back (such as a queue), one stores a reference to the last node in the list. The next node after the last node is the first node. Elements can be added to the back of the list and removed from the front in constant time.
An XOR linked list is a ... doubly linked lists, such as the ability to delete a node from the list knowing only its address or the ability to insert a new node ...
The first node (the "head") is a sentinel: it stores no interesting information and is only used for its next pointer. The operations that must be supported on lists are as follows. Given a node n that is not yet part of the list, and a pointer p to a node in the list (perhaps the head), insert n after p. Given a pointer p, delete p.next from ...
The idea of DLX is based on the observation that in a circular doubly linked list of nodes, x.left.right ← x.right; x.right.left ← x.left; will remove node x from the list, while x.left.right ← x; x.right.left ← x; will restore x's position in the list, assuming that x.right and x.left have been left unmodified. This works regardless of ...
The first and last nodes of a doubly linked list for all practical applications are immediately accessible (i.e., accessible without traversal, and usually called head and tail) and therefore allow traversal of the list from the beginning or end of the list, respectively: e.g., traversing the list from beginning to end, or from end to beginning, in a search of the list for a node with specific ...
The nodes of a linked data structure can also be moved individually to different locations within physical memory without affecting the logical connections between them, unlike arrays. With due care, a certain process or thread can add or delete nodes in one part of a data structure even while other processes or threads are working on other parts.
To delete a key k, we find its leaf using the hash table on the leaves. We remove it from the linked list, but remember which were the successor and predecessor. Then we walk from the leaf to the root of the trie, removing all nodes whose subtree only contained k and updating the descendant pointers
Because unrolled linked list nodes each store a count next to the next field, retrieving the kth element of an unrolled linked list (indexing) can be done in n/m + 1 cache misses, up to a factor of m better than ordinary linked lists. Additionally, if the size of each element is small compared to the cache line size, the list can be traversed ...