Search results
Results from the WOW.Com Content Network
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
In essence, fringe search is a middle ground between A* and the iterative deepening A* variant (IDA*). If g(x) is the cost of the search path from the first node to the current, and h(x) is the heuristic estimate of the cost from the current node to the goal, then ƒ(x) = g(x) + h(x), and h* is the actual path cost to the goal.
In iterative deepening search, the previous iteration has already established a candidate for such a sequence, which is also commonly called the principal variation. For any non-leaf in this principal variation, its children are reordered such that the next node from this principal variation is the first child.
Performing the same search without remembering previously visited nodes results in visiting the nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, D, F, E cycle and never reaching C or G. Iterative deepening is one technique to avoid this infinite loop and would reach all nodes.
This complicates adding transposition table optimizations for negamax. It is insufficient to track only the node's value in the table, because value may not be the node's true value. The code therefore must preserve and restore the relationship of value with alpha/beta parameters and the search depth for each transposition table entry.
The steps specified in the sequence are relative to the current node, not absolute. For example, if the current node is v j, and v j has d neighbors, then the traversal sequence will specify the next node to visit, v j+1, as the i th neighbor of v j, where 1 ≤ i ≤ d.