enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    For example, when =, the binomial coefficient () is equal to 6, and there are six arrangements of two copies of A and two copies of B: AABB, ABAB, ABBA, BAAB, BABA, BBAA. The same central binomial coefficient ( 2 n n ) {\displaystyle {\binom {2n}{n}}} is also the number of words of length 2 n made up of A and B within which, as one reads from ...

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power In mathematics , the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem .

  4. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  5. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then

  6. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  7. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...

  8. Problem of points - Wikipedia

    en.wikipedia.org/wiki/Problem_of_points

    The problem of dividing the stakes became a major motivating example for Pascal in his Treatise on the arithmetic triangle. [4] [5] Though Pascal's derivation of this result was independent of Fermat's tabular method, it is clear that it also describes exactly the counting of different outcomes of + additional rounds that Fermat suggested.

  9. Singmaster's conjecture - Wikipedia

    en.wikipedia.org/wiki/Singmaster's_conjecture

    Singmaster's conjecture is a conjecture in combinatorial number theory, named after the British mathematician David Singmaster who proposed it in 1971. It says that there is a finite upper bound on the multiplicities of entries in Pascal's triangle (other than the number 1, which appears infinitely many times).