Search results
Results from the WOW.Com Content Network
The complete icosahedron is formed from all the cells in the stellation, but only the outermost regions, labelled "13" in the diagram, are visible. The stellation of a polyhedron extends the faces of a polyhedron into infinite planes and generates a new polyhedron that is bounded by these planes as faces and the intersections of these planes as ...
Given the icosahedron, the circumscribed octahedron can be chosen in five ways, giving a compound of five octahedra, which comes under our definition of stellated icosahedron. (The reciprocal compound, of five cubes whose vertices belong to a dodecahedron, is a stellated triacontahedron .)
There are 58 stellations of the icosahedron, including the great icosahedron (one of the Kepler–Poinsot polyhedra), and the second and final stellations of the icosahedron. The 59th model in The fifty nine icosahedra is the original icosahedron itself. Many "Miller stellations" cannot be obtained directly by using Kepler's method.
In geometry, a tetrahedrally diminished [a] dodecahedron (also tetrahedrally stellated icosahedron or propello tetrahedron [1]) is a topologically self-dual polyhedron made of 16 vertices, 30 edges, and 16 faces (4 equilateral triangles and 12 identical quadrilaterals).
The stellation diagram for the icosahedron with the central triangle marked for the original icosahedron. The Fifty-Nine Icosahedra is a book written and illustrated by H. S. M. Coxeter, P. Du Val, H. T. Flather and J. F. Petrie.
The regular icosahedron can be faceted into three regular Kepler–Poinsot polyhedra: small stellated dodecahedron, great dodecahedron, and great icosahedron. They all have 30 edges. They all have 30 edges.
Net In geometry , the Rhombicosidodecahedron is an Archimedean solid , one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces . It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices , and 120 edges .
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes.