enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon , or in the special case n = 4 , a cyclic quadrilateral .

  3. Johnson circles - Wikipedia

    en.wikipedia.org/wiki/Johnson_circles

    In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H.In such a configuration the circles usually have a total of four intersections (points where at least two of them meet): the common point H that they all share, and for each of the three pairs of circles one more intersection point (referred here as their 2-wise intersection).

  4. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  5. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  6. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

  7. de Longchamps point - Wikipedia

    en.wikipedia.org/wiki/De_Longchamps_point

    Let the given triangle have vertices , , and , opposite the respective sides , , and , as is the standard notation in triangle geometry.In the 1886 paper in which he introduced this point, de Longchamps initially defined it as the center of a circle orthogonal to the three circles , , and , where is centered at with radius and the other two circles are defined symmetrically.

  8. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    To draw the circumcircle, draw two perpendicular bisectors p 1, p 2 on the sides of the bicentric quadrilateral a respectively b. The perpendicular bisectors p 1, p 2 intersect in the centre O of the circumcircle C R with the distance x to the centre I of the incircle C r. The circumcircle can be drawn around the centre O.

  9. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.