enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geothermal gradient - Wikipedia

    en.wikipedia.org/wiki/Geothermal_gradient

    Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...

  3. Earth's crust - Wikipedia

    en.wikipedia.org/wiki/Earth's_crust

    The temperature of the crust increases with depth, [2] reaching values typically in the range from about 100 °C (212 °F) to 600 °C (1,112 °F) at the boundary with the underlying mantle. The temperature increases by as much as 30 °C (54 °F) for every kilometer locally in the upper part of the crust.

  4. Global surface temperature - Wikipedia

    en.wikipedia.org/wiki/Global_surface_temperature

    In 2004 scientists found trends of +0.19 degrees Celsius per decade when applied to the RSS dataset. [36] Others found 0.20 degrees Celsius per decade up between 1978 and 2005, since which the dataset has not been updated. [37] The most recent climate model simulations give a range of results for changes in global-average temperature.

  5. Geologic temperature record - Wikipedia

    en.wikipedia.org/wiki/Geologic_temperature_record

    [citation needed] During the PETM, the global mean temperature seems to have risen by as much as 5–8 °C (9–14 °F) to an average temperature as high as 23 °C (73 °F), in contrast to the global average temperature of today at just under 15 °C (60 °F). Geologists and paleontologists think that during much of the Paleocene and early ...

  6. Lower mantle - Wikipedia

    en.wikipedia.org/wiki/Lower_mantle

    As a result, the lower mantle's temperature gradient as a function of depth is approximately adiabatic. [1] Calculation of the geothermal gradient observed a decrease from 0.47 kelvins per kilometre (0.47 °C/km; 1.4 °F/mi) at the uppermost lower mantle to 0.24 kelvins per kilometre (0.24 °C/km; 0.70 °F/mi) at 2,600 kilometres (1,600 mi). [3]

  7. Crust (geology) - Wikipedia

    en.wikipedia.org/wiki/Crust_(geology)

    The internal structure of Earth. In geology, the crust is the outermost solid shell of a planet, dwarf planet, or natural satellite.It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be defined based on its phase (solid crust vs. liquid mantle).

  8. Earth's outer core - Wikipedia

    en.wikipedia.org/wiki/Earth's_outer_core

    The average magnetic field strength in Earth's outer core is estimated to be 2.5 millitesla, 50 times stronger than the magnetic field at the surface. [9] [10] As Earth's core cools, the liquid at the inner core boundary freezes, causing the solid inner core to grow at the expense of the outer core, at an estimated rate of 1 mm per year.

  9. Paleoclimatology - Wikipedia

    en.wikipedia.org/wiki/Paleoclimatology

    Oxygen-18 quantity changes (δ 18 O) in ice layers represent changes in average ocean surface temperature. Water molecules containing the heavier O-18 evaporate at a higher temperature than water molecules containing the normal Oxygen-16 isotope. The ratio of O-18 to O-16 will be higher as temperature increases but it also depends on factors ...