enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The sieve of Eratosthenes can be expressed in pseudocode, as follows: [8] [9] algorithm Sieve of Eratosthenes is input: an integer n > 1. output: all prime numbers from 2 through n. let A be an array of Boolean values, indexed by integers 2 to n, initially all set to true.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The sieve of Eratosthenes starts with all numbers unmarked (gray). It repeatedly finds the first unmarked number, marks it as prime (dark colors) and marks its square and all later multiples as composite (lighter colors).

  6. Sieve method - Wikipedia

    en.wikipedia.org/wiki/Sieve_method

    Sieve method, or the method of sieves, can mean: in mathematics and computer science, the sieve of Eratosthenes, a simple method for finding prime numbers in number theory, any of a variety of methods studied in sieve theory; in combinatorics, the set of methods dealt with in sieve theory or more specifically, the inclusion–exclusion principle

  7. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    Sieve of Pritchard: algorithm steps for primes up to 150. In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. [1] It is especially suited to quick hand computation for small bounds.

  8. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    Preparing such a table (usually via the Sieve of Eratosthenes) would only be worthwhile if many numbers were to be tested. If instead a variant is used without primality testing, but simply dividing by every odd number less than the square root the base-2 n digit number a, prime or not, it can take up to about: /

  9. Byte Sieve - Wikipedia

    en.wikipedia.org/wiki/Byte_Sieve

    The Byte Sieve is a computer-based implementation of the Sieve of Eratosthenes published by Byte as a programming language performance benchmark.It first appeared in the September 1981 edition of the magazine and was revisited on occasion.